
LLNL-CONF-411205

Mercury + VisIt: Integration of a
Real-Time Graphical Analysis Capability
into a Monte Carlo Transport Code

M. J. O'Brien, R. J. Procassini, K. I. Joy

March 11, 2009

International Conference on Mathematics, Computational
Methods & Reactor Physics
Saratoga Springs, NY, United States
May 3, 2009 through May 7, 2009

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

International Conference on Mathematics, Computational Methods & Reactor Physics (M&C 2009)
Saratoga Springs, New York, May 3-7, 2009, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2009)

MERCURY + VISIT: INTEGRATION OF A REAL-TIME GRAPHICAL
ANALYSIS CAPABILITY INTO A MONTE CARLO TRANSPORT CODE

Matthew O’Brien and Richard Procassini
Lawrence Livermore National Laboratory

Mail Stop L-95, P.O. Box 808
Livermore, CA 94551

United States of America
mobrien@llnl.gov and spike@llnl.gov

Kenneth Joy
Computer Science Department

University of California at Davis
Davis, CA 95616

United States of America
kijoy@ucdavis.edu

ABSTRACT

Validation of the problem definition and analysis of the results (tallies) produced during a Monte
Carlo particle transport calculation can be a complicated, time-intensive processes. The time re-
quired for a person to create an accurate, validated combinatorial geometry (CG) or mesh-based
representation of a complex problem, free of common errors such as gaps and overlapping cells,
can range from days to weeks. The ability to interrogate the internal structure of a complex, three-
dimensional (3-D) geometry, prior to running the transport calculation, can improve the user's con-
fidence in the validity of the problem definition. With regard to the analysis of results, the process
of extracting tally data from printed tables within a file is laborious and not an intuitive approach
to understanding the results. The ability to display tally information overlaid on top of the prob-
lem geometry can decrease the time required for analysis and increase the user's understanding of
the results. To this end, our team has integrated VisIt, a parallel, production-quality visualization
and data analysis tool into Mercury, a massively-parallel Monte Carlo particle transport code.
VisIt provides an API for real time visualization of a simulation as it is running. The user may se-
lect which plots to display from the VisIt GUI, or by sending VisIt a Python script from Mercury.
The frequency at which plots are updated can be set and the user can visualize the simulation re-
sults as it is running.

Key Words: Visualization, Geometry Validation, Combinatorial Geometry, Monte Carlo Transport.

 1 INTRODUCTION

Rather than “reinventing the wheel” by developing custom software to visualize the results from
our Monte Carlo particle transport simulations, our team has chosen to use VisIt [1], an existing
scientific visualization and data analysis tool. For years, the Mercury Monte Carlo particle
transport code [2],[3] had the ability to write restart and graphics files that could be opened by
VisIt for post-processing visualization. Recently, our team has connected Mercury and VisIt via
in-memory data transfers. This has been achieved through the use of VisIt application program-

O'Brien, Procassini and Joy

ming interface (API) function calls [4] which provide VisIt with the data that it needs for plot-
ting, based on user requests.

VisIt is capable of visualizing domain decomposed mesh based data on structured and unstruc-
tured meshes. This feature is used to visualize mesh-based geometry from Mercury. VisIt can
also visualize “point” based data, a feature which is used to visualize particle-based data from
Mercury. A relatively new feature in VisIt is the ability to discretize and visualize constructive
solid geometry (CSG) data, which is also known as combinatorial geometry (CG) data. The user
provides VisIt the coefficients of the surfaces that define the cells, as well as how the surfaces are
combined together to form cells, and VisIt will automatically discretize and visualize the CG
data. Before VisIt had this capability, the user would direct Mercury to convert its internal CG
data into mesh based data by overlaying the CG onto a graphics mesh and sampling the CG at
the mesh points. If a mesh cell intersected multiple CG cells, a “mixed” mesh cell is created that
contains the volume fractions of the partial CG cells. This mesh sampling algorithm will be de-
scribed later in more detail.

Mercury has recently been extended to support an interactive Python interface. This allows the
user to issue the “visit()” command to launch VisIt and connect it to the running Mercury simula-
tion. Once this connection has been made, the user may select various plots from the VisIt
graphical user interface (GUI). Alternatively, the user may request plots directly from the
Python interface to Mercury by feeding VisIt a Python script [5], such as “visit(‘myScript.py’)”.
This will send the contents of the Python script ‘myScript.py’ to VisIt for visualization. As part
of the Mercury input, the user may also set the frequency at which the VisIt plots are updated,
even as the simulation is running.

 2 TYPES OF PLOTS SUPPORTED BY VISIT

VisIt supports many different types of plots, including mesh, material, pseudocolor, domain,
curve, histogram, contour, particle, vector, label and volume rendering. It also has many opera-
tors that can be applied to these plots, such as clipping and material subselection. Material subs-
election is one of the most useful operators in VisIt. It allows the user to enable / disable visual-
ization of any material in the problem. This allows the user to focus in on exactly what they are
looking for, while hiding what they are not interested in.

In this section, the various plots that are available in VisIt will be demonstrated, as they are ap-
plied to the “Criticality of the World” test problem. This problem is a 7 x 7 x 7 lattice of 235U
spheres embedded in a block of low density material. The problem was set up using combinato-
rial geometry with 73 + 1 = 344 cells. Each sphere has a radius r = 5.0 cm , with the exception
of the center sphere, which has a radius r = 8.7407 cm . The density of all of the spheres is
 = 19.1 g /cm3 . The centers of each of the spheres are separated by  = 24.0 cm . Low densi-
ty 235U ( = 10−10 g /cm3) surrounds the lattice of spheres. Each of the spheres is subcritical,
with the exception of the center sphere, which is supercritical. The initial source of particles is in
a sphere at a corner of the lattice. A static k eigenvalue calculation is performed on this system
using 100,000 simulated neutrons. The plots presented in the following subsections display the
iterative evolution of the simulation, as the particles “find” the center sphere.

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

2/27

Integrated Real-Time Visualization in a Monte Carlo Transport Code

 2.1 Mesh Plots

For the mesh plots shown in Figure 1, the user has requested a 100 x 100 x 100 cell “graphics
mesh” be overlaid on top of the CG for visualization. The problem was run in parallel on 64 pro-
cessors using 64 (4 x 4 x 4) spatial domains. The figure shows plots of (a) the graphics mesh, (b)
the graphics mesh which is color coded by the domain that the cells are assigned to, (c) the
graphics mesh overlaid by a material plot showing the 235U spheres, and (d) both the mesh and
low density 235U filler have been “hidden” via VisIt’s material subselection feature.

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

3/27

Figure 1. Examples of mesh plots from VisIt: (a) mesh only, (b) mesh plus domain,
(c) mesh plus material, (d) mesh is hidden and the low density 235U is
removed via the material subselection feature.

(b)(a)

(c) (d)

O'Brien, Procassini and Joy

 2.2 Material Plot

VisIt has the ability to color code various problem attributes by material. For instance, the 235U
spheres in Figures 1c and 1d are colored red. Similarly, Figure 2 is a plot of both the underlying
geometry and the particles, which is color coded by material. Every mesh cell has at least one,
(or multiple) material(s) associated with it for “clean” (“mixed”) cells. Similarly, every particle
a;so has a background material associated with it. In Figure 2, the opacity of the low density
filler 235U (shown in green) has been reduced to make it look transparent, while the high density
235U has been completely hidden. This permits us to plot the particles which are color coded by
their background material. The figure clearly indicates that the particles are residing almost ex-

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

4/27

Figure 2. The particles in the problem are color coded according to their background
material in this VisIt material plot. Note that the particles reside almost exclu-
sively in the high-density 235U spheres.

Integrated Real-Time Visualization in a Monte Carlo Transport Code

clusively within the high-density 235U spheres. Since the particle distribution has not yet con-
verged, remnants of the initial particle source are visible in the lower-left sphere.

When plotting particles in VisIt, one may plot them as simple “points”, as shown in Figure 3a, or
as “spheres”, as in Figure 3b. Figure 3c shows particles color coded by material and the low-

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

5/27

Figure 3. Examples of material plots from VisIt: (a) “point” particles color coded by
material, (b) “sphere” particles color coded by material, (c) particles plus low
opacity filler material, and (d) high density spheres plus low opacity filler ma-
terial .

(c) (d)

(b)(a)

O'Brien, Procassini and Joy

density 235U material with a low opacity, which is analogous to Figure 2. Finally, in Figure 3d,
the high-density 235U material is plotted with full opacity, while the low-density 235U material is
plotted with low opacity.

 2.3 Pseudocolor Plots

A pseudocolor plot maps values of the chosen parameter to colors. VisIt supports pseudocolor
plots of a wide variety of problem parameters. Some examples of pseudocolor plots are shown
in Figure 4. Note that the material subselection feature has been used to hide the low-density
filler material on this figure. Figure 4a is a pseudocolor plot of the CG cell index. Note that the
“color palette” indicates that the range of values is 0 to 343, for a total of 344 cells. This type of
plot has been extremely useful for debugging the definition of combinatorial geometries. This
plot, along with VisIt’s “pick” tool, allows one to click on a cell and query the CG cell index.
Figure 4b is a pseudocolor plot of the base-10 logarithm of neutron number density in each CG
cell, which is the eigenvector associated with the k eigenvalue. VisIt allows linear or logarithmic
color scales, which can be used to “spread” out the color values. In this case the log scale pro-
vides greater dynamic range than the linear scale, thereby showing a greater ranges of colors.

 2.4 Domain Plots

In a typical problem, the user specifies the physical extents of the Cartesian graphics mesh and
the number of cells in each (x,y,z) direction. The Mercury Monte Carlo code automatically do-
main decomposes the graphics mesh into N spatial domains, where N is the number of processors

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

6/27

Figure 4. Examples of pseudocolor plots from VisIt: (a) a pseudocolor plot of CG cell
index, and (b) a pseudocolor plot of base-10 logarithm of the neutron number
density.

(b)(a)

Integrated Real-Time Visualization in a Monte Carlo Transport Code

used for the calculation. This makes the generation of the plots faster, since each processor has
to render only a portion of the entire problem. The problem shown in Figure 5 was run on 64
processors, hence the graphics mesh is shown as 64 color-coded domains in Figure 5a. In Figure
5b, the CG cells in each domain are assigned the color which indicates the domain decomposi-
tion of the graphics mesh. Note that this is only the domain decomposition of the graphics mesh,
which, in general, is different than the domain decomposition of the combinatorial geometry.
For additional information on the CG domain decomposition methods used in Mercury, please
see the paper by Green man, et al. entitled “Enhancements to the Combinatorial Geometry Parti-
cle Tracker in the Mercury Monte Carlo Transport Code”.

 2.5 Volume Rendering Plots

VisIt also supports volume rendering of both mesh data (as shown in Figures 6a, 6b, 6c and 6e)
and particle data (as shown in Figure 6d). Figures 6a through 6c show that mass density in the
problem for various numbers of volume rendering ray samples. When a low number of ray sam-
ples are used (5×104 ray samples in 6a), the image looks fuzzy. However, as the number of
samples is increased, the image becomes sharper (5×105 ray samples in 6b and 5×106 ray
samples in 6c). The kinetic energy of each neutron particle is rendered in Figure 6d using
5×107 ray samples, and the neutron number density in each cell of the graphics mesh is ren-
dered in Figure 6e using 5×105 ray samples.

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

7/27

Figure 5. Examples of domain plots from VisIt: (a) the graphics mesh is color coded
by spatial domain, and (b) the CG cells are color coded by spatial domain.

(b)(a)

O'Brien, Procassini and Joy

 2.6 Particle Plots

VisIt supports particle plots in which the pseudocolor can be associated with any particle at-
tribute. For instance, Figure 7a shows the particle plot where the neutrons are color coded by
their kinetic energy. This provides an indication of the particle distribution in both space and en-
ergy. The figure clearly shows a concentration of particles in the center sphere. In addition since
the eigenvector has not yet converged, one can see some remnants of the initial particle source in
the lower left sphere.

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

8/27

Figure 6. Examples of volume rendering plots from VisIt: (a) - (c) are renderings of
the mass density in the problem is volume rendered for (a) 5×104 samples,
(b) 5×105 samples, and (c) 5×106 samples, (d) is a rendering of the neutron
kinetic energy and (e) is a rendering of the neutron number density.

(b)(a) (c)

(e)(d)

Integrated Real-Time Visualization in a Monte Carlo Transport Code

Figure 7b shows the particle plot where the neutrons are color coded by the index of the CG cell
that contains the particle coordinates. This type of plots is very useful for finding particle track-
ing bugs. It is very easy for the human eye to spot an incorrectly colored particle. By employing
a “discontinuous” color scale, in which adjacent cells have drastically different colors instead of
continuously varying colors, it is even easier to determine when a particle has an incorrect cell
attribute.

 2.7 Vector Plots

Figure 8 illustrates the velocity vector plotting feature in VisIt, where the velocity vectors for
each particle in Figure 8a. The vectors are colored by the speed (magnitude of the velocity) of
each particle. Since plotting all of this data can result in a very dense image, VisIt has an option
to specify the stride with which particles are drawn. For example, in Figures 8b, 8c and 8d plot
every 4th, 8th and 16th particle , respectively.

 2.8 Histogram Plots

Figure 9 is a histogram of the number of particles in various kinetic energy bins (the particle
spectral distribution), as plotted on a log(E) - log(f[E]) scale. This type of plot permits easy de-
termination of the energy distribution of the particles. The histogram plot is also useful for
looking at the particle weight distribution. Histogram plots can be produced for any particle- or
mesh-based data.

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

9/27

Figure 7. Examples of particle plots from VisIt: (a) the particles are color coded their
kinetic energy, and (b) the particles are color coded their CG cell index.

(b)(a)

O'Brien, Procassini and Joy

 2.9 Curve Plots

In addition to three-dimensional visualization and rendering, VisIt can also plot data as a function
of a single independent variable, aka curve plots. An example of this VisIt feature is Figure 10,
which shows the iteration history of (1) the k eigenvalue for each iteration (generation) in red,
(2) the iteration (generation) averaged eigenvalue 〈k 〉 in green, (3) the averaged eigenvalue plus

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

10/27

Figure 8. Examples of velocity plots from VisIt, where the particles are color coded by
their speed: (a) every particle is plotted, (b) every 4th particle is plotted, (c)
every 8th particle is plotted, and (d) every 16th particle is plotted.

(c) (d)

(b)(a)

Integrated Real-Time Visualization in a Monte Carlo Transport Code

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

11/27

Figure 9. An example of histogram plots from VisIt. This is a log(E) – log(f[E]) plot of
the particle spectral distribution.

Figure 10. An example of curve plots from VisIt. This shows the iteration history of the
k eigenvalue (red), averaged eigenvalue 〈k 〉 (green) and averaged eigenval-

ue +/- one standard deviation 〈k 〉 ± 1 (cyan, blue).

O'Brien, Procassini and Joy

one standard deviation 〈k 〉  1 in cyan, and (4) the averaged eigenvalue minus one standard
deviation 〈k 〉 − 1 in blue. The figure clearly shows that, as the iteration count increases, the
standard deviation decreases and the averaged eigenvalue 〈k 〉 is converging. Note the disconti-
nuity in the average 〈k 〉 eigenvalue at 34 iterations. This is due to a change from initial (inac-
tive) to final (active) “settle” iterations after iteration 34. This method assumes that the initial 34
iterations is sufficient to “settle” the neutron distribution through the transient phase and towards
a stationary distribution. After 34 iterations, the averaging begins anew with what is assumed to
be a equilibrium distribution.

 3 USING THE INLINE INTERFACE TO VISIT

Once the 'visit()' function has been executed via Mercury's Python interface, the VisIt GUI and
at least one data window will be launched. The user is then able to select the data sets of interest
for display within multiple data windows.

 3.1 Time Evolution of The “Criticality Of The World” Problem

Figures 11 – 14 show the VisIt GUI and 4 data windows during the evolution of a k eigenvalue
simulation of the “Criticality of the World” problem. These figures are displaying data for itera-
tions (generations) 1, 6, 26 and 63, respectively. The GUI control panel is shown on the left side
of these images, and the four data windows are displaying (Upper Left) a pseudocolor plot of the
base-10 logarithm of the neutron number density, (Upper Right) a curve plot of the iteration his-
tory of k , 〈k 〉 , 〈k 〉  1 and 〈k 〉 − 1 , (Lower Left) a particle plot of base-10 logarithm of
the neutron kinetic energy, and (Lower Right) a curve plot of the flux entropy, which is used as
an eigenvector convergence diagnostic. The screen snapshots shown in these figures were ob-
tained while the tally data was being updated in real-time during a Mercury simulation of a test
problem.

Let us examine the evolution of the plotted data. In Figure 11 (Iteration 1), there are not yet two
points for the curve plots, so they are blank. One can see that after only a single iteration, the
particles are still concentrated in the vicinity of the lower left sphere where they were sourced.
After another 5 iterations, Figure 12 (Iteration 6) shows that while the particles have begun to
reach the far corners of the system, they are still concentrated around the source sphere. By Iter-
ation 26 (Figure 13), a large number of particles are being produced within the central sphere and
the particle distribution is approaching its equilibrium state. Finally, by Iteration 63 (Figure 14),
a large fraction of the particles are within the central sphere, and the particle distribution has be-
come stationary. Note the a discontinuity at Iteration 34, which is when Mercury switched from
inactive to active “settle” cycles.

 3.2 Command Recording, Playback and Scripting Features in VisIt

Figure 15 shows the VisIt window that permits recording and playback of your mouse clicks to
the main VisIt GUI. When recording is enabled, VisIt automatically translates mouse clicks into
a Python script. Later, that Python script can be “played back” to achieve the same behavior as
your mouse clicks. It is also possible to save the Python script to a text file, which can be hand-
ed back to VisIt via the interactive Mercury Python prompt. For example, suppose the user

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

12/27

Integrated Real-Time Visualization in a Monte Carlo Transport Code

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

13/27

Figure 12. Time evolution of the “Criticality of the World” test problem: Visualization
of various data items at Iteration 6.

Figure 11. Time evolution of the “Criticality of the World” test problem: Visualization
of various data items at Iteration 1.

O'Brien, Procassini and Joy

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

14/27

Figure 14. Time evolution of the “Criticality of the World” test problem: Visualization
of various data items at Iteration 63.

Figure 13. Time evolution of the “Criticality of the World” test problem: Visualization
of various data items at Iteration 26.

Integrated Real-Time Visualization in a Monte Carlo Transport Code

saves the script to a file named 'cow.py', as shown in Figure 16. Later, at the Mercury Python
prompt, the user would type 'visit(’cow.py’)' to feed the Python script back to VisIt. This permits
the user to quickly recover all of the plots, without having to reselect them via VisIt's main GUI
window.

 4 COMBINATORIAL GEOMETRY SAMPLING AND DISCRETIZATION METHODS

The problem at hand is: Given the analytic surfaces that define the CG, how does one visualize
them in a mesh-based visualization tool like VisIt? The approach taken by the Mercury and Vis-
It teams is to translate the analytic, surface-based representation of the CG to a mesh-based rep-
resentation, by sampling the CG onto a graphics mesh. Before VisIt was modified to internally
discretize combinatorial geometry (map it onto a graphics mesh), Mercury would perform that
discretization, writing out a mesh file, which VisIt could then visualize. While this method
works well, it has the drawback of having to store a (potentially) large graphics mesh in memory

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

15/27

Figure 15. The record and playback window in VisIt, showing the Python script that is
automatically generated from the user's mouse click in the main GUI
window.

O'Brien, Procassini and Joy

and on disk. Several techniques for sampling the CG onto a graphics mesh have been imple-
mented in either Mercury or VisIt. These results of these techniques are contrasted in Figure 17
for a single, spherical CG cell.

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

16/27

##
File Name: cow.py
Purpose: This is an example python script that sets up 4 VisIt Windows.
1. Pseudocolor plot of: log(particle number density)
2. 4 curve plots: K, K Ave, K Ave + StdDev, K Ave - StdDev.
3. Pseudocolor plot of log(particle KE)
4. 1 curve plot: Flux Entropy
#
Usage: Mercury> visit('cow.py')
##

def setMyView():
 # Set view
 View3DAtts = View3DAttributes()
 View3DAtts.viewNormal = (-0.973501, 0.0961496, -0.207485)
 View3DAtts.focus = (72.5, 72.5, 72.5)
 View3DAtts.viewUp = (0.11985, 0.987242, -0.104832)
 View3DAtts.viewAngle = 30
 View3DAtts.parallelScale = 134.234
 View3DAtts.nearPlane = -268.468
 View3DAtts.farPlane = 268.468
 SetView3D(View3DAtts)

SetWindowLayout(4)

SetActiveWindow(1) # Window 1, Pseudocolor plot of log(particle number density)
SetActivePlots(tuple(range(GetPlotList().GetNumPlots())))
DeleteActivePlots()
AddPlot("Pseudocolor", "MC_Number_Density_Neutron", 1, 0)
TurnMaterialsOff()
TurnMaterialsOn(("Uranium_235"))
PseudocolorAtts = PseudocolorAttributes()
PseudocolorAtts.scaling = PseudocolorAtts.Log
PseudocolorAtts.minFlag = 1
PseudocolorAtts.min = 1e-11
SetPlotOptions(PseudocolorAtts)
setMyView()
DrawPlots()

SetActiveWindow(2) # Window 2, Curve plot of K, K Ave, K Ave + StdDev, K Ave -
StdDev
SetActivePlots(tuple(range(GetPlotList().GetNumPlots())))
DeleteActivePlots()
AddPlot("Curve", "k Eigenvalue", 1, 0)
AddPlot("Curve", "k Eigenvalue Ave", 1, 0)
AddPlot("Curve", "K - Std Dev", 1, 0)
AddPlot("Curve", "K + Std Dev", 1, 0)
DrawPlots()

Figure 16. The Python script that is generated by the record feature in VisIt.

Integrated Real-Time Visualization in a Monte Carlo Transport Code

 4.1 “Lego” Method

The very first implementation of this sampling technique that was implemented in Mercury is
reminiscent of “Legos” building blocks. The user was required to define a graphics mesh, and
each graphics cell was assigned exactly one CG cell. That cell was chosen by answering the
question “Which CG cell is the center of each graphic cell in?” The accuracy with which this
method reproduces the underlying CG could be severely limited, as evidenced in Figure 17a.
Obviously, a better method is needed.

 4.2 Adaptive Mesh Refinement (AMR) Method

In this method, Mercury recursively samples, up to some user specified limit, each graphics cell
to get an accurate volume fraction of each CG cell that it overlaps. As a result, the graphics cells
on the boundary of a CG cell are known as mixed-material cells, or simply, mixed cells Mercury
only writes out volume fraction information and then relies on VisIt’s material interface recon-
struction (MIR) algorithm to subdivide the graphics cells into parts, corresponding to the volume
fraction of the material within the cell. This method can produce images that are superior to the
“Lego” method, as shown in Figures 17b and 17c.

As seen if Figure 17c (which shows the AMR mesh on a cut place through the center of the CG
spherical cell), if the 8 corners of a 3D Cartesian graphics cell all contain the same CG cell, the
discretization algorithm terminates. If any of the corners contains a different CG cells, the algo-
rithm recursively subdivides the cell into 8 subcells, and continues sampling. There are user set-
table parameters for controlling the minimum and maximum recursion limits. The goal of the al-
gorithm is to compute the volume fraction of each CG cell within each graphics cell. VisIt uses
the volume fraction information to perform a material interface reconstruction (MIR) to attempt
to reconstruct the position of the CG cell interface within the graphics mesh.

 4.3 Conformal Cell Method

Starting with a Cartesian graphics mesh, “launch” a particle from the center of that mesh to every
node of the mesh. If the particle intersects a CG surface before it reaches the neighboring node
in the graphics mesh, that mesh node is moved to lie on the CG surface. The idea is to confor-
mally move the graphics mesh nodes directly onto the CG surfaces, such that the graphics mesh
contains cells of exactly one material. Since this mesh is only used for visualization, and not a
finite difference or finite element calculation, it does not matter how distorted the graphics cells
are. At current, the Mercury team is still researching the best implementation of this algorithm.

Results from the AMR and conformal cell discretization methods are compared for a set of nest-
ed CG spheres in Figure 18. The AMR and conformal meshes are shown on a cut plane through
the center of the spheres in Figures 18a and 18b, respectively. In the AMR method, one can see
that the base mesh is Cartesian. Mercury has computed volume fractions of each CG cell within
each graphics cell, and then VisIt use its MIR method to draw the CG cell boundaries. In the
conformal method, the figure shows that while the starting point was a Cartesian mesh, the nodes
of the mesh were moved onto CG cell boundaries.

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

17/27

O'Brien, Procassini and Joy

 4.4 Native VisIt Method

In this method, Mercury does not convert its internal CG representation to a mesh representation.
Rather, it provide the CG representation directly to VisIt. The coefficients of the analytic sur-

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

18/27

Figure 17. Illustration of the various methods for discretizing and sampling a combi-
natorial geometry onto a graphics mesh: (a) the “Lego” method, (b) - (c) the
adaptive mesh refinement (AMR) (mixed cell) methods, and (d) native VisIt
method.

(c) (d)

(b)(a)

Integrated Real-Time Visualization in a Monte Carlo Transport Code

faces, and how those surfaces are combined to form CG cells, are transferred between the codes.
VisIt then performs an AMR discretization of the CG, and creating an AMR mesh on which to
visualize the CG. The results of this method, including the adaptive structure of the graphics
mesh, are shown in Figures 17d.

 4.5 AMR Method: Algorithm Error Analysis

In the AMR, or mixed cell, method, Mercury recursively samples each graphics mesh cell, at-
tempting to calculate an accurate volume fraction for each CG cell the overlays the graphics
mesh cell. For this error analysis, consider a sphere of radius r = 8.7407 cm , centered at the
origin (0,0,0). Now assume that it is contained within a single graphics mesh cell with limits [0,
10] x [0, 10] x [0, 10], such that an octant of the sphere will be sampled. Let the minimum and
maximum refinement levels vary from 1 to 11. Now enforce that the minimum refinement equal
the maximum refinement, which shall be termed constrained AMR. For a 3D AMR mesh, at re-
finement level n , there are 8n sample points: each cell is subdivided in half in each of the 3 co-
ordinate directions 23 = 8 . Since this mesh is an octant of a sphere, the exact volume is:

V =  4
3
8.74073/8= 349.6530057623 cm3 (1)

As the refinement level is increased by 1 level, one would expect the error to go down roughly
by a factor of 8, since each graphics cell is subdivided into 8 subcells. Defining the error at re-
finement level n as:

E [n] = 〚V exact−V calculated 〛 (2)

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

19/27

Figure 18. Comparison of the (a) adaptive mesh refinement (AMR) (mixed cell)
method and (b) the conformal mesh method for the discretization of a set
of nested CG spheres.

(b)(a)

O'Brien, Procassini and Joy

The error for constrained AMR discretization of the CG sphere is shown in Table I and Figure 19
for various refinement levels. Beyond the noise at small refinement levels, Figure 19a shows a
roughly linear relationship on a log scale, hence the error is decaying exponentially. Figure 19b
shows the error for refinement levels n = 7, 8, 9, 10, 11 as fit to an exponential. The calculated
an expoential fit is:

E [n] = 1.028×10−1 5.27n (3)

This says that the error decreses by a factor of about 5.27 when the refinement is increased by
one level. This is roughly what is expected, since each graphics cell is divided into 8 subcells as
for each increase in refinement level. Therefore, one would expect the error to go down by at
most a factor of 8 for each increase in refinement level.

 4.6 Geometry Error Detection

It can be very difficult to ensure that your CG is defined correctly. Mercury has “gap” and
“overlap” detection built into its graphics mesh options. Anytime a graphics mesh is created, the
code will automatically find “gaps”, which are defined to be points in space where no CG cell
claims ownership of that location. This implementation employs the Mercury routine CG rack-
ing routine “Which cell am I in?” at each node in the graphics mesh. If no CG cell claims own-
ership of the point, then a “gap” has been found. Overlap detection must be requested by the
user, since it is a more expensive calculation. For each graphics mesh point, the code loops over
each CG cell and determines if the CG cell thinks it owns that point in space. If more than one
CG cell claim ownership of the point, then “overlapping” cells have been found. The void and
overlap detection are based on the graphics mesh resolution that the user requests. Since Mer-
cury samples the CG at the nodes of the graphics mesh, if gaps or overlaps are smaller than the
mesh resolution, this sampling method will not detect those errors.

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

20/27

Table I. Error analysis of constrained adaptive mesh refinement
(AMR) algorithm for calculating volume fractions.

Refinement
Level

Volume Error
E[n]

Error Ratio
E[n-1] / E[n]

Calculated Volume

1 4.36057623183E-02 349.6094000000
2 1.64010057623E+01 2.65872489469E-03 333.2520000000
3 4.78942376817E-02 3.42442150793E+02 349.7009000000
4 9.59594237682E-01 4.99109267240E-02 350.6126000000
5 5.94057623183E-02 1.61532181430E+01 349.5936000000
6 2.20942376817E-02 2.68874460274E+00 349.6751000000
7 1.63942376817E-02 1.34768313786E+00 349.6694000000
8 3.69423768171E-03 4.43778638360E+00 349.6567000000
9 9.87387681732E-04 3.74142573384E+00 349.6539931500
10 1.36472318275E-04 7.23507663837E+00 349.6528692900
11 2.10223182648E-05 6.49178252157E+00 349.6529847400

Exact Volume: 349.6530057623

Integrated Real-Time Visualization in a Monte Carlo Transport Code

A simple example of gaps and overlaps is shown in Figure 20. Figure 20a shows 2 red uranium
spheres that are overlapping (shown as cyan overlapping_cells), a blue “gap” sphere (shown as
void) that has been excluded from the green air sphere, and the blue“gap” volume outside the air
sphere. The volumes assigned to the void and overlapping_cells regions is shown in Figure 20b.
It is the user's responsibility to decide if the void and overlapping_cells regions are valid. For
example, in this problem, a vacuum boundary condition has been applied to the outer surface of
the green air sphere. Therefore, the void region outside of the green sphere is valid. However,

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

21/27

Figure 19. Plot of (a) the calculated error and (b) the error fit to an exponential in the
volume of a sphere versus refinement level in the constrained AMR method.

(a)

(b)

O'Brien, Procassini and Joy

no boundary condition has been applied to the small, internal blue void sphere, hence this is a ge-
ometry setup error. When discretizing the CG onto the graphics mesh, Mercury prints of the
mass and volume of all regions / materials in the problem, including any void or overlapping_
cells “material” found., as shown in Figure 20c.

 5 IMAGE GALLERY

This section presents images from VisIt that demonstrate how visualization has been used to aid
in understanding and verification of Mercury code development issues.

 5.1 Dynamic Load Balancing

Mercury supports a method of dynamically balancing the particle work load by redcomposition
of the spatial domains. VisIt can be used to visualize the domain decomposition to verify that it
intuitively makes sense. Figure 21 shows the spatial domain decomposition of a 3D Cartesian

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

22/27

Material Uranium Mass 2.0408300111e+03 Volume 5.4451174255e+01
Material Air Mass 2.3926665283e+00 Volume 1.9938887736e+03
Material void Mass 0.0000000000e+00 Volume 3.2463340822e+03
Material overlapping_cells Mass 0.0000000000e+00 Volume 2.9325969955e+01

Total Mass 2.0432226776e+03 Volume 5.3240000000e+03

Figure 20. A simple example of gaps and overlaps in a combinatorial geometry:
(a) a material plot showing all regions, (b) a material plot showing only the
void (gap) and overlapping_cells (overlap) regions, and (c) a printed tale of
the “masses” and volumes of each region.

(b)(a)

(c)

Integrated Real-Time Visualization in a Monte Carlo Transport Code

mesh that is used to model an octant of a supercritical uranium sphere, where the center of the
sphere is located at the upper, central corner of the problem. The particles in Figure 21 are color
coded by the domain that they reside in. The density of the particles indicate that most of the
work load is at the center of the sphere than father out radially. Figure 21a shows a uniform do-
main decomposition of the problem in 64 domains, while Figure 21b shows the domain decom-
position that Mercury has chosen to balance the work load in each domain.

While particles in Mercury are tracked in 3D Cartesian space, it is plots the particles on a 2D
“cylindrical projection”. Figure 22 shows such a projection, where the particle's Cartesian coor-

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

23/27

Figure 21. Two possible decompositions of supercritical-uranium-sphere criticality
problem into 64 spatial domains: (a) a uniform decomposition, and
(b) a load balanced decomposition.

(b)(a)

Figure 22. Evolution of the domain decomposition in a supercritical-uranium-sphere
criticality problem in response to the evolution of the particle workload.

(a) (b) (c) (d)

O'Brien, Procassini and Joy

dinates  x , y , z  have been mapped to cylindrical coordinates  z , r  = z ,x2 y 2 , and the
particles are color coded by domain. Moving from left to right (a to d) in Figure 22, one can see
that the domain decomposition is varying dynamically in response to the evolution of the particle
workload, as the particles migrate from their source at the center of the sphere to the outer reach-
es of the sphere.

 5.2 Material Interface Reconstruction

Figure 23 shows a particle plot for a 2D cylindrical mesh problem, where a cylindrical projection
has been applied to the particle coordinates. This image has been used to verify the material in-
terface reconstruction (MIR) algorithm within Mercury. First note the bold black line that iden-
tifies the material interface. It is computed to be normal to the gradient of the material volume
fraction. The position of the line has found to match the input volume fractions of the materials
in the underlying mesh. Next note that each particle is colored by the material that it is in. It
took many iterations of code development, followed by visualization, to obtain this image.
These iterations relied upon the ease of spotting a particle that is colored incorrectly based upon
its location. This type of visualization is extremely valuable for validating code development.

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

24/27

Figure 23. A particle plot which demonstrates the validity of the material interface
reconstruction (MIR) algorithm in Mercury: particles which are color cod-
ed by material are on the correct side of the black material interface.

Integrated Real-Time Visualization in a Monte Carlo Transport Code

 5.3 Embedded Mesh in Combinatorial Geometry

Mercury has the ability to embed a mesh region with a combinatorial geometry region (see the
paper by Green man, et al. in these proceedings for further information). Figure 24 shows a
combinatorial geometry region with 2 embedded mesh regions: one 2D cylindrical mesh and one
3D Cartesian mesh. In Figure 24a, the particles are color coded by region. In this case, particles
are blue if they reside within the CG region (none are present), green if they reside within the 2D
cylindrical mesh region, and red if they reside within the 3D Cartesian mesh region. Figure 24b
shows a cutaway of the CG cells that are color coded by cell index, as well as the outer
boundaries of the 2D and 3D embedded meshes.

 5.4 Setup Verification for Complex Geometries

Several examples of complex combinatorial geometries that have been developed with Mercury
and visualized with VisIt are shown in Figure 25. These images are (Figures 25a and 25b) the
National Ignition Facility (NIF) target chamber and support structures, (Figure 25c) a fusion
shield test facility with particles that are color coded by kinetic energy, (Figure 25d) a concentric
sphere criticality test problem also with particles that are color coded by kinetic energy, and
(Figures 25e and 25 f) a uranium and beryllium fast-spectrum critical assembly.

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

25/27

Figure 24. Plots of am embedded mesh problem with a combinatorial geometry (CG)
region surrounding a 2D cylindrical and 3D Cartesian mesh: (a) the parti-
cles are color coded by the region they reside in, and (b) the CG cells are
color coded by their cell index.

(b)(a)

O'Brien, Procassini and Joy

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

26/27

Figure 25. A variety of complex geometries that were developed in Mercury and
visualized in VisIt.

(b)(a)

(d)(c)

(f)(e)

Integrated Real-Time Visualization in a Monte Carlo Transport Code

 6 SUMMARY

This paper has demonstrated how the VisIt visualization tool has been integrated with the Mer-
cury Monte Carlo particle transport code to provide real-time visualization and analysis capabil-
ities of running problems. This integrated analysis tool has been shown to be invaluable for veri-
fication of algorithms during code development, user verification of problem geometry setup,
and visualization of simulation results. Several algorithms for converting combinatorial geome-
try data to mesh data for visualization with mesh-based tools (such as VisIt) have been presented.
Extensions to VisIt that permit native discretization and visualization of combinatorial geometry
data have also been described. Finally, the paper has discussed the embedding of a Python inter-
preter within Mercury. This feature can be used to launch and attach VisIt to Mercury, and to
send VisIt Python scripts which contain plot commands to automatically create plots in VisIt
data windows.

ACKNOWLEDGMENTS

This work performed under the auspices of the U.S. Department of Energy by the
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

The authors would thank VisIt code developers Brad Whitlock for implementing the
inline VisIt interface and for adding support for combinatorial geometry to that inter-
face, and Mark Miller for implementing the VisIt discretization of combinatorial ge-
ometry data for visualization in VisIt and for various performance and usability en-
hancements.

REFERENCES

1. "VisIt Web Site", Lawrence Livermore National Laboratory, http://www.llnl.gov/visit (2008).
2. R. J. Procassini, et al., "Mercury User Guide (Version c.2)", Lawrence Livermore National

Laboratory, Report UCRL-TM-204296, Revision 1 (2008).
3. "Mercury Web Site", Lawrence Livermore National Laboratory, http://www.llnl.gov/mercury

(2009).
4. The VisIt Code Team, "Getting Data Into VisIt (Version 1.5.4)", Lawrence Livermore

National Laboratory, Report UCRL-SM-224277 (2006).
5. The VisIt Code Team, "VisIt Python Interface Manual (Version 1.4.1)", Lawrence Livermore

National Laboratory, Report UCRL-SM-209589 (2005).

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

27/27

